Constructing inverse probability weights for continuous exposures: a comparison of methods.
نویسندگان
چکیده
Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.
منابع مشابه
Practice of Epidemiology Constructing Inverse Probability Weights for Marginal Structural Models
The method of inverse probability weighting (henceforth, weighting) can be used to adjust for measured confounding and selection bias under the four assumptions of consistency, exchangeability, positivity, and no misspecification of the model used to estimate weights. In recent years, several published estimates of the effect of time-varying exposures have been based on weighted estimation of t...
متن کاملConstructing inverse probability weights for marginal structural models.
The method of inverse probability weighting (henceforth, weighting) can be used to adjust for measured confounding and selection bias under the four assumptions of consistency, exchangeability, positivity, and no misspecification of the model used to estimate weights. In recent years, several published estimates of the effect of time-varying exposures have been based on weighted estimation of t...
متن کاملComparison of FAHP and FANP Decision-Making Methods in Determining the Appropriate Locations for Constructing an Underground Dam for Water Harvesting
The recent droughts in Iran made a decline in groundwater table and the migration of villagers to cities was hindered supplying drinking water for the current population. Therefore it should be considered as an important issue. In this regard, it is possible to achieve this goal by constructing underground dams that recently have been suggested to replace by medium and small overland dams. The ...
متن کاملInvestigation continuous noise exposure and occupational performance of the workers in the pharmaceutical industry: A Case Study in an Ampoule and Vial Production Industry
Introduction: Exposure to noise is considered as one of the most important health problems in various industries, especially pharmaceutical industry, which can ultimately lead to significant negative effects on labor force and occupational performance. The aim of this study was to investigate the relationship between continuous noise exposure and occupational performance of the workers in the p...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epidemiology
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2014